Web-Scraping-implementation-on-Amazon-India-website

This project utilizes e-commerce data scraping techniques employing Selenium and BeautifulSoup to extract specific product details. Focused on showcasing a single product type, it retrieves information on Name, Price, Rating, Number of reviews, and the product's URL. The adaptable code allows customization for diverse websites. Post-extraction, the data is compiled into a .csv file, facilitating user utilization for model shortlisting or analytics.

The project centers on DELL Laptops, employing Pandas, Matplotlib, and Seaborn for dataset analysis within a Jupyter Notebook environment. Essential package installations include Selenium and bs4, while browser-specific drivers, like msedgedriver.exe for Microsoft Edge, enable access to website data.

Begin the coding process for the Amazon data scraping function by following these steps:

Import Packages:

To scrape Amazon data, import the required packages for the project. Ensure inclusion of essential libraries.

Import-Packages

Web Driver:

Define the execution path of the downloaded driver, such as "location/msedgedriver.exe," to enable its usage. This specification ensures the browser launches automatically with an empty page.

Web-Driver

Enter Amazon India URL:

Utilize the .get() function to open the site using the URL as an argument. This step initiates access to the specified Amazon India webpage.

Enter-Amazon-India-URL

Generate Search Item URL:

To search, combine the URL with the item's name. Utilize the search_term variable, representing the item name, and create a function to insert this name into the URL dynamically. By using an e-commerce data scraper, this method ensures seamless searching for the specified item.

Generate-Search-Item-URL

Replace Spaces in Search Term:

Substitute spaces with "+" in the search_term variable. In URLs, replace the spaces, and multi-word inputs are connected using this symbol. This adjustment ensures the proper formation of the search term for URL compatibility.

Replace-Spaces-in-Search-Term

Now, proceed to open the generated URL in the browser. This action is essential for initiating the Amazon data scraping process and navigating to the specific search results page.

Now-proceed-to-open-the-generated-URL-in-the-browser

Extract Data:

Retrieve all HTML code from the Page Source. Although manual extraction from the site's page source is possible through right-clicking and selecting "View page source," this process is inefficient. Instead, utilize BeautifulSoup to automate the extraction of HTML code, streamlining the data retrieval process.

Extract-Data

Extract Relevant Data:

Focus solely on the results pertinent to the search_term. After analyzing the page source, identify the suitable tag for extraction: < div data-component-type="s-search-result" >. Retrieve all data associated with this tag to gather the relevant information for the specified search term.

Extract-Relevant-Data

Iterative Data Extraction:

The provided code extracts e-commerce data solely from the first page. To extend this functionality across multiple pages, incorporate a loop in subsequent code segments. The length of the data_extracted variable corresponds to the number of products on the initial page. Be mindful that some products may lack pricing, rating, or review information, posing potential errors that lie in later code sections.

Iterative-Data-Extraction

Data Prototype:

Establish a foundational understanding of the tags essential for extracting specific product information. Create a prototype as a reference, outlining the tags for the extraction process. This prototype serves as a guide for identifying and retrieving relevant data about each product on the webpage.

Data-Prototype

Extract Record Function:

Our e-commerce data scraping services help refine the extraction by creating an extract_record() function. This function focuses on retrieving specific details, such as price and ratings, essential for forming conclusions about each product. This optimization ensures that only the necessary information is extracted from the HTML code, streamlining the data analysis process.

Extract-Record-Function

Implement error handling within the extract_record() function to accommodate cases where variables, such as price or reviews, might not have assigned values. It ensures the robustness of the code, preventing potential errors when specific product details are unavailable.

Error Handling:

Error-Handling

Utilize a loop to iterate over each product, retrieving the data into the records list. This list will eventually become a compilation of tuples, each representing the details of a specific laptop. This structured approach allows for organized product information storage for further analysis or export.

Utilize-a-loop-to-iterate-over-each-product

Intel Core i7-12650H (10-Core, 24MB, up to 4.70 GHz) // Memory & Storage: 16 GB, 2 x 8 GB, DDR5, 4800 MHz, dual-channel & 512GB SSD

Navigate Through Pages:

Utilize the page query in the URL, such as https://www.amazon.in/gp/browse.html?node=1375424031&ref_=nav_em_sbc_mobcomp_laptops_0_2_8_15, to navigate through pages. Concatenate each query with the URL using "&" to access different pages sequentially. This method systematically explores multiple pages to obtain comprehensive data on the searched item.

Navigate-Through-Pages

Upon executing the preceding function, the query will resemble the following format: https://www.amazon.in/s?k=laptops &ref=nb_sb_noss_2&page{}. In this structure, any page number can be passed as a placeholder within the "{}" to navigate through various pages in the search results.

Combined Code:

The consolidated code incorporates the functions and assignments in the required order. Copy and run this code on your system, provided you have the necessary packages installed, to initiate the web scraping process efficiently.

Combined-Code

The driverFunction() function will generate an "amazon_scrape_data.csv" file, serving as a valuable resource for product selection and future analysis. This CSV file consolidates the extracted data, offering a convenient format for users to explore, evaluate, and utilize the scraped information.

The-driverFunction-function-will-generate-an

Next Step: Analysis of DELL Laptops on Amazon India

With the established data scraping mechanism, we can now delve into the analysis and visual representation of DELL Laptops on Amazon India. Let's explore critical insights, trends, and patterns within the extracted data, providing a comprehensive view for informed decision-making and strategic planning.

Next-Step-Analysis-of-MSI-Laptops-on-Amazon-India

Sample Laptop Information:

Brand Dell

Model Name G15-5520

Screen Size 15.6

Colour Dark Shadow Grey

Hard Disk Size 512 GB

CPU Model Core i7

RAM Memory Installed Size 16 GB

Operating System Windows 11

Special Feature Backlit Keyboard

Graphics Card Description

This laptop's name encompasses essential details such as screen size, processor, colour options, hard disk size, and specifications related to graphics, operating system, RAM, and storage.

This-laptops-name-encompasses-essential-details This-laptops-name-encompasses-essential-details

It's imperative to gain a preliminary understanding of the collected data. It involves extracting key insights, patterns, and trends from our gathered information. This initial analysis will lay the foundation for more in-depth exploration and strategic decision-making based on the available data.

Its-imperative-to-gain-a-preliminary-understanding

Filtering Unwanted Data:

It's crucial to eliminate laptops from other companies, inadvertently included due to sponsorships or advertisements. Implement a meticulous process to exclude these entries and remove any other extraneous or unwanted data, ensuring the dataset remains focused and relevant to our analysis.

Cleaning the Dataset:

Before delving deeper into the dataset, the initial step involves the removal of laptops not associated with DELL. This cleaning process ensures that only relevant data from DELL, excluding other companies, is retained for subsequent analysis.

Cleaning-the-Dataset

To enhance accuracy, eliminate duplicate data entries present in the dataset. This step ensures that each laptop's information is unique, preventing redundancy and providing a more precise representation of the collected data.

To-enhance-accuracy,-eliminate-duplicate-data-entries

Observing that Price, Ratings, and Review_Count are currently in string format, we plan to modify them later. Before this adjustment, checking for null values within these variables is essential to ensure data integrity and completeness. print(“Number of Null values in each column:\n”)

Observing-that-Price-Ratings-and-Review-Count

Addressing the absence of ratings in 24 laptops, a value of 0 will be added to indicate no rating. Additionally, the data type for the Ratings column will be modified to float, enhancing data consistency and facilitating further analysis.

Addressing-the-absence-of-ratings-in-24-laptops

Now, remove all null values.

Now-remove-all-null-values

Creating Processor Column:

Creating-Processor-Column Creating-Processor-Column

After the removal of null rows, it's imperative to adjust the index values. Ensuring the index correctly aligns with the modified dataset is crucial for streamlined data access and analysis. This correction facilitates a more organized and accurate representation of the data.

After-the-removal-of-null-rows-its-imperative-to-adjust-the

A new column specifies the processor name for each laptop. This addition provides a detailed breakdown of the processor information, facilitating more comprehensive analysis and insights into the dataset.

A-new-column-specifies-the-processor-name-for-each-laptop

Ensure the processor column is available to the dataset by thoroughly checking. This step confirms the inclusion of the new column and validates its presence in the dataset for further analysis.

Ensure-the-processor-column-is-available-to-the-dataset

Since some laptops may not specify the processor, implement a solution to handle these instances of missing processor information. It ensures that the dataset remains comprehensive and accurate, accounting for variations in the availability of specific details.

Since-some-laptops-may-not-specify-the-processor

Removing Laptops with Missing Processor Information:

Identify and exclude laptops from the dataset that do not provide any information regarding the processor name. It ensures that the dataset only includes entries with relevant processor details, contributing to the accuracy and relevance of the analysis.

Identify-and-exclude-laptops-from-the-dataset

Determine the current number of laptops remaining in the dataset after implementing the necessary cleaning and filtering procedures. This count provides valuable insight into the dataset's size and completeness, paving the way for subsequent analyses.

Determine-the-current-number-of-laptops-remaining-in-the-dataset-after

Transform the "Price" column into numerical format using Price Intelligence for a more standardized and analytically helpful representation. This conversion enables efficient numerical operations and facilitates meaningful analysis of the pricing information in the dataset.

Pricing

Pricing

Reviews

Reviews

Visualization

Utilize a barplot to visually represent the distribution of laptops with Intel and AMD processors. This graphical representation provides a clear overview of the processor types present in the dataset, facilitating a quick and informative analysis.

Visualization

Explore the distribution of laptops based on their ratings and prices. This analysis aims to unveil patterns and trends, offering insights into the relationship between a laptop's rating and its corresponding price. The graphical representation, likely a scatter plot or similar visualization, will provide a comprehensive overview of these two crucial factors, aiding in strategic decision-making and product evaluation.

Explore-the-distribution-of-laptops-based-on-their-ratings Explore-the-distribution-of-laptops-based-on-their-ratings-2

Examining the rating distribution, it becomes evident that 50% of the laptops fall within the 0–1 star range, 43.8% within the 3–5 star range, and 6.26% within the 1–2 star range. This observation suggests a significant level of satisfaction among current customers, as a substantial majority of laptops garner higher ratings.

Examining-the-rating-distribution Examining-the-rating-distribution-2

Analyzing the price distribution reveals that the % of laptops, 63.7%, falls into the mid to high price range, exceeding Rs. 70,000. Notably, there are laptops priced at most Rs. 50,000 in the dataset. This information provides insights into the prevailing price brackets of the available laptops, guiding potential customers and influencing purchasing decisions.

Develop a versatile function that allows users to input a specific price range and receive a list of laptops falling within that range. This functionality enhances user engagement, providing a tailored approach to explore laptops based on individual budget preferences.

Develop-a-versatile-function-that-allows-users-to-input-a

The returned list

The-returned-list

Explore the dataset to identify the most expensive laptops based on the "Price" attribute. This information is crucial for users seeking high-end options and contributes to a comprehensive understanding of the price distribution within the available laptops.

Explore-the-dataset-to-identify-the-most-expensive

Cheapest One

Cheapest-One

Ratings

Highest Rated

Highest-Rated Highest-Rated-2

Least

Least

Most Reviewed

Most-Reviewed

Least reviewed

Least-reviewed

Conclusion: By leveraging the provided code to extract a .csv file from Amazon India, users can create a DataFrame for visualization or specific data analysis. Additional modifications can cater to different product categories. The insights gained in this project show that most MSI laptops fall within the medium to high price range and predominantly feature Intel processors. Notably, 50% of laptops need ratings or reviews. The least expensive laptop is Rs.53,990 (3.3 stars, 7 reviews), while the most expensive is Rs.2,99,999 (0 stars, 0 reviews). The top-reviewed model is the MSI Bravo 15 Ryzen 7 4800H, priced at Rs75,990, with a rating of 4.2 stars and 53 reviews.

Product Data Scrape is committed to ethical standards across all facets, spanning Competitor Price Monitoring Services to Mobile Apps Data Scraping. Our global footprint ensures unparalleled and transparent services, catering to a broad spectrum of client requirements.

RECENT BLOG

What Are the Benefits of Using Web Scraping for Brand Price Comparison on Nykaa, Flipkart, and Myntra?

Web scraping for brand price comparison on Nykaa, Flipkart, and Myntra enhances insights, competitive analysis, and strategic pricing decisions.

How Can Web Scraping Third-Party Sellers on E-commerce Marketplaces Enhance Brand Protection?

Web scraping third-party sellers on e-commerce marketplaces enhances brand protection and helps detect counterfeit products efficiently.

What Strategies Can Be Developed Through Scraping Product Details Data from the Shein?

Scraping product details data from Shein provides insights into trends, customer preferences, pricing strategies, and competitive analysis for businesses.

Why Product Data Scrape?

Why Choose Product Data Scrape for Retail Data Web Scraping?

Choose Product Data Scrape for Retail Data scraping to access accurate data, enhance decision-making, and boost your online sales strategy.

Reliable-Insights

Reliable Insights

With our Retail data scraping services, you gain reliable insights that empower you to make informed decisions based on accurate product data.

Data-Efficiency

Data Efficiency

We help you extract Retail Data product data efficiently, streamlining your processes to ensure timely access to crucial market information.

Market-Adaptation

Market Adaptation

By leveraging our Retail data scraping, you can quickly adapt to market changes, giving you a competitive edge with real-time analysis.

Price-Optimization

Price Optimization

Our Retail Data price monitoring tools enable you to stay competitive by adjusting prices dynamically, attracting customers while maximizing your profits effectively.

Competitive-Edge

Competitive Edge

With our competitor price tracking, you can analyze market positioning and adjust your strategies, responding effectively to competitor actions and pricing.

Feedback-Analysis

Feedback Analysis

Utilizing our Retail Data review scraping, you gain valuable customer insights that help you improve product offerings and enhance overall customer satisfaction.

Awards

Recipient of Top Industry Awards

clutch

92% of employees believe this is an excellent workplace.

crunchbase
Awards

Top Web Scraping Company USA

datarade
Awards

Top Data Scraping Company USA

goodfirms
Awards

Best Enterprise-Grade Web Company

sourcefroge
Awards

Leading Data Extraction Company

truefirms
Awards

Top Big Data Consulting Company

trustpilot
Awards

Best Company with Great Price!

webguru
Awards

Best Web Scraping Company

Process

How We Scrape E-Commerce Data?

Insights

Explore our insights related blogs to uncover industry trends, best practices, and strategies

FAQs

E-Commerce Data Scraping FAQs

Our E-commerce data scraping FAQs provide clear answers to common questions, helping you understand the process and its benefits effectively.

E-commerce scraping services are automated solutions that gather product data from online retailers, providing businesses with valuable insights for decision-making and competitive analysis.

We use advanced web scraping tools to extract e-commerce product data, capturing essential information like prices, descriptions, and availability from multiple sources.

E-commerce data scraping involves collecting data from online platforms to analyze trends and gain insights, helping businesses improve strategies and optimize operations effectively.

E-commerce price monitoring tracks product prices across various platforms in real time, enabling businesses to adjust pricing strategies based on market conditions and competitor actions.

Let’s talk about your requirements

Let’s discuss your requirements in detail to ensure we meet your needs effectively and efficiently.

bg

Trusted by 1500+ Companies Across the Globe

decathlon
Mask-group
myntra
subway
Unilever
zomato

Send us a message